r - Prediction of value with Bayesian Linear Regression using rstanarm -
i have excel file shown below , converted r data frame shown in r data frame: wanted predict value year-2001 , lag-168 (coloured in red) using values in row of year 2001. know value of year-2001 , lag -168 in there research wanted check accuracy of model. need use bayesian glm "rstanarm" package. can please me solve issue. great how predict if there no predictors in solving bayesian glm's.
r dataframe:
year lag amount yearno 2001 12 187572 1 2001 24 331364 1 2001 36 354886 1 2001 48 361970 1 2001 60 365251 1 2001 72 366729 1 2001 84 368047 1 2001 96 368775 1 2001 108 369457 1 2001 120 369709 1 2001 132 370048 1 2001 144 370109 1 2001 156 370152 1 2001 168 370262 1 2002 12 193797 2 2002 24 340855 2 2002 36 363227 2 2002 48 369038 2 2002 60 373025 2 2002 72 379143 2 2002 84 381168 2 2002 96 382779 2 2002 108 383456 2 2002 120 383633 2 2002 132 383782 2 2002 144 383858 2 2002 156 383946 2 2003 12 199427 3 2003 24 341038 3 2003 36 361413 3 2003 48 369054 3 2003 60 377653 3 2003 72 381431 3 2003 84 383027 3 2003 96 383479 3 2003 108 383947 3 2003 120 384156 3 2003 132 384286 3 2003 144 384596 3 2004 12 203652 4 2004 24 352605 4 2004 36 379737 4 2004 48 392936 4 2004 60 398892 4 2004 72 404386 4 2004 84 406845 4 2004 96 407229 4 2004 108 407574 4 2004 120 407831 4 2004 132 408103 4 2005 12 232439 5 2005 24 411692 5 2005 36 446767 5 2005 48 462847 5 2005 60 468766 5 2005 72 477511 5 2005 84 478681 5 2005 96 479705 5 2005 108 479862 5 2005 120 479978 5 2006 12 269034 6 2006 24 476014 6 2006 36 514783 6 2006 48 526703 6 2006 60 531778 6 2006 72 534083 6 2006 84 535445 6 2006 96 536868 6 2006 108 537362 6 2007 12 276283 7 2007 24 486645 7 2007 36 531464 7 2007 48 544502 7 2007 60 550863 7 2007 72 554442 7 2007 84 555901 7 2007 96 556313 7 2008 12 359850 8 2008 24 639936 8 2008 36 692785 8 2008 48 707921 8 2008 60 713411 8 2008 72 716725 8 2008 84 718021 8 2009 12 353329 9 2009 24 633537 9 2009 36 676511 9 2009 48 688039 9 2009 60 693073 9 2009 72 696304 9 2010 12 375282 10 2010 24 650360 10 2010 36 689786 10 2010 48 700194 10 2010 60 705370 10 2011 12 398196 11 2011 24 659351 11 2011 36 696741 11 2011 48 707723 11 2012 12 388397 12 2012 24 643874 12 2012 36 683007 12 2013 12 396966 13 2013 24 651386 13 2014 12 386238 14
Comments
Post a Comment