python - reshape while converting Pandas Dataframe to numpy array -
i have pandas dataframe, has 4 rows , n columns, out taking 1 column using feature classifier. shown below
0 [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] 1 [0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1] 2 [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0] 3 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0]
this column list
of 16 binary encoded features.
but when feed classifier, below error comes up
traceback (most recent call last): clf.fit(x,y) x, y = check_x_y(x, y, 'csr') ensure_min_features, warn_on_dtype, estimator) array = np.array(array, dtype=dtype, order=order, copy=copy) valueerror: setting array element sequence.
i suppose error because fit method wants nxm matrix, while shape gets is
(4,)
so basically,
i want try convert shape(4,) shape(4,16)
i tried below functions:
x = np.asarray(train_data['presence_vector']) x.reshape((4,16)) x = train_data['presence_vector'].values x.reshape((4,16)) x = train_data['presence_vector'].as_matrix() x.reshape((4,16))
none of worked.
should have tried usual way. if there better solution below
reshaped=[] l in x: reshaped.append(l) x_new=np.array(reshaped) print(x_new.shape) (4, 16)
Comments
Post a Comment